
1

A Preliminary Analysis of the MPI Queue

Characterisitics of Several Applications

Ron Brightwell†, Sue Goudy, and Keith D. Underwood

Sandia National Laboratories‡

Email: {rbbrigh,spgoudy,kdunder}@sandia.gov

Abstract

Understanding the message passing behavior and network resource usage of distributed-memory

message-passing parallel applications is critical to achieving high performance and scalability. While

much research has focused on how applications use critical compute related resources, relatively little

attention has been devoted to characterizing the usage of network resources, specifically those needed by

the network interface. This paper discusses the importance of understanding network interface resource

usage requirements for parallel applications and describes an initial attempt to gather network resource

usage data for several real-world codes. The results show widely varying usage patterns between

processes in the same parallel job and indicate that resource requirements can change dramatically as

process counts increase and input data changes. This suggests that general network resource management

strategies may not be widely applicable, and that adaptive strategies or more fine-grained controls may

be necessary for environments where network interface resources are severely constrained.

Index Terms

MPI, resource usage, resource management, network interface

Relevant Technical Area

Operating Systems and Resource Management, Cluster Computing

†Correspdonding author.
‡ Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States

Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

2

I. INTRODUCTION

There are many challenges to running an application on a large-scale, distributed-memory

massively parallel processing (MPP) machine. Much attention has been directed toward under-

standing the performance and scalability of applications. This focus has been on understanding

and characterizing resource usage including host processors, memory, and, to a limited extent, the

network. The goal of most performance analysis tools is to provide the insight necessary to insure

that an application is using important resources to its maximum benefit. Every effort is made to

find the appropriate strategies for management of processor cycles, the memory subsystem, and

the network. The performance and scalability of an application is largely determined by how

well these resources can be used as the scale of the system increases.

While significant effort has been directed toward understanding the usage of host processors

and memory, there is relatively little effort aimed at understanding and characterizing network

resource usage, and network interface resources in particular. Networks are typically measured

in terms of micro-benchmarks that demonstrate the maximum performance potential in idealized

situations. Although this set of micro-benchmarks has been extended to enable measurements of

network performance using typical application scenarios, there is currently little understanding

or published researched of what typical scenarios really are.

Even as the struggle to understand the behavior of real-world applications continues, networks

are requiring greater resources. New bus technologies, such as PCI Express and HyperTransport,

have enabled lower latencies than were previously possible, and advanced signaling technology

has led to a significant increase in network bandwidth. To leverage performance increases,

network interfaces have increased in processing power and memory capacity. As network inter-

faces become more complex and the number and type of resources associated with the network

continues to increase, the general lack of understanding also increases. In order to address this

problem, the amount of effort directed toward understanding network resource usage will need

to be similar to that currently being put into gathering, analyzing, and obtaining insight from

host processing and memory resources.

This paper presents an initial analysis of the network interface processing and memory require-

ments of several real-world applications. There are two important impacts of this analysis. First,

this type of data can be beneficial from an application performance standpoint. The application

3

may be modified to better match a fixed resource management scheme, or, conversely, a more

efficient management scheme can be employed to meet the needs of the application. Second, this

type of data can be extremely beneficial for designing future networks and network interfaces.

The rest of the paper is organized as follows. In the next section, we provide additional

background information, which is followed in Section III by a description of our approach to

characterizing network resource usage. In Sections IV and V, we describe the platform from

which our data has been collected and provide details about the applications that were used.

Results and analysis of the collected data are presented in Section VI. The important conclusions

of this study are discussed in Section VII. Section VIII discusses this work in the context of

similar studies, and Section IX provides an overview of future work on this topic.

II. BACKGROUND

A. Placement and Management of Network Resources

Network resources and their associated management strategies have continued to evolve through-

out the existence of distributed memory MPP platforms. In early MPPs, such as the Intel

Paragon[1], the operating system allocated and managed network resources. Accessing the net-

work required an application to invoke the operating system. The operating system managed

buffer space, implemented flow control protocols, and allocated other resources (such as message

descriptor handles for identifying asynchronous transfers). When a resource was exhausted, the

operating system had to allocate new resources or recover used ones. For example, an application

using the NX message passing interface had a (fixed) maximum number of outstanding message

receive descriptors. A process that tried to exceed this limit would block until a transfer completed

and a previously allocated descriptor was freed.

Research on these early platforms led to new strategies for dealing with network resources.

For example, a fundamental part of the Puma [2] lightweight kernel research at Sandia National

Laboratories and the University of New Mexico is the Portals network API [3]. Portals moves

nearly all of the networking resources into the application’s address space and provides building

blocks that can be assembled to handle many different types of protocols. By moving resources

to the user-level, the application is only constrained by the amount of its memory that it wants to

dedicate to networking. It also controls how much processing will be needed to handle messaging

requests. This strategy has several benefits. The size of the Puma kernel is fixed and does not

4

change as a process allocates and consumes more network resources, and the complexity of the

kernel is significantly reduced.

Recent networking technology has shifted the placement of network resources and requires a

reexamination of resource usage and management strategies. Network interfaces now have pro-

cessor and memory resources dedicated to handling network activities; however, these resources

are significantly less capable than the resources on the host. The embedded processors used

on current-generation high-performance network interfaces are at least an order of magnitude

slower than typical host processors, and the amount of on-board memory is one to four orders

of magnitude smaller than host memory.

This arrangement is prevalent in large and extreme scale systems. ASCI Q (over 8000 pro-

cessors) uses the Quadrics network[4], which handles many networking tasks using a user

programmable thread processor on the NIC. Numerous large clusters[5], [6] use the Quadrics

or Myrinet network (which also has a processor on the NIC). The upcoming ASCI Red Storm

supercomputer, a joint project between Cray, Inc., and Sandia, has over 10,000 processors[7],

[8] and uses a custom network designed by Cray. The network interface for Red Storm has

a 500 MHz PowerPC and 384 KB of on-board memory, while the host node has a 2.0 GHz

AMD Opteron and 2 GB of main memory. Thus, the network interface is tightly constrained

in memory resources and somewhat constrained in processing resources. Even the 65,000 node

IBM Blue Gene/L supercomputer must consider the allocation of resources to networking as it

uses a similar architecture to the Intel ASCI Red machine[9] currently deployed at Sandia. In this

architecture, two processors (700 MHz PowerPC 440 processors on Blue Gene/L and 333 MHz

Pentium II processors on ASCI Red) share main memory and share access to the network(s).

Network resource usage will significantly impact how application and network processing is

divided between the processors.

B. MPI Network Resources

Although the high-performance networks in large-scale distributed-memory machines are often

used for other traffic (e.g. I/O traffic), MPI is typically the most important service to analyze

in terms of resource usage. This importance arises from two factors. First, MPI typically has

the biggest influence on the network performance of an application. Second, MPI is often the

only service that is primarily controlled by the user rather than the system. That is, MPI is the

5

only network service where the application programmer is largely in charge of behavior at both

the sender and the receiver. Other services involve system-level components that provide the

opportunity to tightly control resource allocation and management.

1) Processor Resources: Different networks require different levels of host computation to

process MPI messages. For example, one network may require a host processor to setup and

monitor network DMA activity, while another network may completely decouple the host pro-

cessor from the network, and avoid any host processor involvement in data transfers. Since

characteristics of this type are highly network dependent, we have taken a more general approach

to characterizing MPI processor resources by analyzing message queue data.

Conceptually, MPI implementations have two message queues — one that contains a list of

outstanding receive requests (the posted receive queue) and one that contains a list of messages

that arrived without a posted receive request (the early arrival or unexpected queue). The posted

receive queue must be traversed when a message arrives. For most implementations, which

represent this queue with a linear list1, the processing time grows with the length of the

queue [10]. Likewise, the unexpected queue must be traversed whenever a receive request is

posted. The MPI implementation must atomically check the unexpected queue for a matching

message before the request is added to the posted receive queue. Again, traversing this (typically)

linear list requires processing resources.

2) Memory Resources: There are several ways in which an MPI implementation can consume

memory. Networks typically have a finite number of send and receive requests that can be

allocated. In some cases, implementations must use sophisticated credit-based schemes for

efficiently managing network transfer requests. Implementations also need to set aside memory

for buffering unexpected messages. This memory resource is probably the biggest single concern

for any MPI implementor. Since most implementations send short messages eagerly to optimize

for latency, situations like an N-to-1 communication pattern can quickly exhaust the buffer space

for unexpected messages.

1Other data structures (such as hashing) are occasionally used, but many of them can be foiled by applications that wildcard

the source and message tag fields in an MPI Recv.

6

III. APPROACH

In this section, we describe how we have instrumented the MPICH [11] implementation of

MPI to gather information about MPI network resource usage. We chose to instrument MPICH

because it is the supported production MPI implementation on our target platform, which is

described in detail in the following section. This allowed us to leverage existing application

configuration and build environments.

The MPICH implementation has an abstract device interface (ADI) [12] that provides a

network transport layer with the functions necessary to implement MPI semantics. In particular,

the posted receive queue and unexpected message queue are linked lists that are managed by

the ADI code. These linked lists are not usually manipulated by the underlying transport layer,

because the ADI abstracts the implementation of these queues.

For example, the ADI provides a function call, MPID Msg arrived(), for the transport

layer to use to signal the arrival of a message. This function traverses the posted receive queue

to see if there is a matching receive posted. If so, it removes the entry from the queue and

proceeds. If not, it enqueues information about the new message in the unexpected queue. In

order to measure the average number of times the posted receive queue is searched, we increment

a counter when MPID Msg arrived() is called. Inside this function call, we also increment

another counter each time a queue entry is inspected.

This function call was also used to track the number of unexpected and expected messages.

At each invocation of the function, a counter is incremented based on the type of message. In

order to have more detail about short versus long messages, we traced the code further down

into the device-specific transport layer (ch gm) and inserted counters there.

The unexpected queue must be searched each time an MPI receive is posted. The MPICH

ADI function, MPID Search unexpected queue and post(), searches through the un-

expected queue looking for a matching message. If no match is found, the receive is added to the

posted receive queue. If a match is found, the unexpected message is dequeued and the receive

is processed. This function calls another ADI function that searches the unexpected queue. We

simply increment a counter each time this function is called, and increment another counter each

time an unexpected queue entry is inspected.

We also profiled the queue management utility functions in the MPICH ADI to keep track

7

of maximum queue length (for each queue). Each time an entry is enqueued, we increment a

length counter associated with the queue. Likewise, this counter is decremented each time an

entry is dequeued. Each time a new entry is enqueued, we inspect the length counter to maintain

its maximum value.

In order to allow applications to access these counters and maximum values, they were

implemented as global variables. This approach allows them to be initialized without an explicit

function call and allows them to be exported to the application easily. The MPICH ADI is not

multi-threaded, so the global values are only manipulated by a single thread of execution.

The data was collected through the MPI profiling interface and written to a file. We defined

our own MPI Finalize() routine to record the values and gather them to rank 0, which opens

a text file and writes them out for each rank. This eliminates the need to modify applications.

We simply re-link the code with the profiling code and the instrumented MPI library.

The overhead of instrumenting MPICH this way is negligible. The additional computation

needed for this instrumentation is insignificant, especially for unexpected messages, which are

already in the low-performance path. For a posted message, the computation and logic operations

are performed after the message has been received, so the additional computation does not impact

the transfer of the data. To reduce variability, we ran each test four times and report the average

of the runs. Each run was made on the same set of compute nodes for each of the different

processor counts.

Because the determination of expected and unexpected messages and the implementation of

MPI message queues are specific to each MPI implementation, and possibly specific to each

transport layer within an MPI implementation, general instrumentation strategies, such as those

used for performance analysis, are not sufficient. There is an ongoing effort to standardize some

of this information in a way that application developers as well as tool implementors can use,

which we describe in Section VIII.

IV. PLATFORM

All tests were run on the Vplant machine at Sandia National Laboratories. Vplant is a Linux

cluster with approximately 320 compute nodes composed of Intel Pentium-III and Pentium-4

processors. These experiments were run on dual-processor Pentium-4 Xeon nodes running at 2.0

GHz. Each node has 1 GB of main memory and a Myrinet-2000 [13] network interface. The

8

nodes are connected in a Clos topology. Vplant was running a Linux 2.4.18 kernel, GM version

1.6.4, and MPICH/GM version 1.2.4..11. All of our runs used only one process per node.

V. BENCHMARKS

A number of production applications were evaluated on the experimental platform. These

include LAMMPS, CTH, and ITS (described below). In addition, the NAS Parallel Benchmarks

(NPB) version 2.4 [14] class B problems were analyzed. These benchmarks are a collection

of MPI applications that are distilled from real computational fluid dynamics applications. We

omitted the EP benchmark from our study, since it does virtually no message passing. These

benchmarks have been well-studied, and are provided for comparison with the real application

data.

A. LAMMPS

LAMMPS is a classical molecular dynamics (MD) code designed to simulate systems at the

atomic or molecular level[15], [16], [17]. Typical applications include simulations of proteins

in solution, liquid-crystals, polymers, zeolites, or simple Lenard-Jones systems. It runs on any

parallel platform that supports the MPI message-passing library 2.

This study presents data from the Bead-Spring Polymer Chains input deck. This is a simulation

of a simple system with molecular bonds. Two types of idealized, 50-length, bead-spring polymer

chains using different bead sizes are simulated along with some free monomers. The polymer

chains first push off from each other for 10000 timesteps and then equilibrate for 10000 timesteps.

The simulated system includes 810 atoms and runs for 20000 timesteps.

B. CTH

CTH is a multi-material, large deformation, strong shock wave, solid mechanics code de-

veloped at Sandia National Laboratories. CTH has models for multi-phase, elastic viscoplas-

tic, porous and explosive materials. Three-dimensional rectangular meshes; two-dimensional

rectangular, and cylindrical meshes; and one-dimensional rectilinear, cylindrical, and spherical

meshes are available. It uses second-order accurate numerical methods to reduce dispersion

2This text adapted with permission from http://www.cs.sandia.gov/˜sjplimp/lammps.html.

9

and dissipation and to produce accurate, efficient results. CTH is used extensively within the

Department of Energy laboratory complexes for studying armor/anti-armor interactions, warhead

design, high explosive initiation physics, and weapons safety issues.

CTH has two fundamental modes of operation: with or without adaptive mesh refinement

(AMR). Adaptive mesh refinement changes the application properties significantly and is useful

for only certain types of input problems. Therefore, we have chosen one AMR problem and

one non-AMR problem for analysis. The non-AMR input was the traditional 2 Gas problem

which is simplistic, but provides a comparison with previous studies[18]. The AMR input was

a representative production run.

C. ITS

The Integrated TIGER Series (ITS) is a suite of codes to perform Monte Carlo solutions of

linear time-independent coupled electron/photon radiation transport problems. It can simulate

problems with or without the presence of macroscopic electric and magnetic fields in multi-

material, multi-dimensional geometries. Individual particles are tracked with independent particle

histories. Thus, particle transport is assumed to be a linear process in which individual particles

do not interact with each other, or alter the medium in which they transport. The ITS data is

from an input deck used in a production run.

VI. RESULTS AND ANALYSIS

In this section, we provide an analysis of the data by looking at trends. We are less concerned

with exact queue resources that a particular application uses, but rather are interested in the

relationship between queue resources and various parameters, such as the size of the job, the

input data, the distribution across ranks, and the correlation of real application data to popular

benchmarks.

A. Unexpected Messages

An unexpected message is a message that arrives before a matching receive has been posted.

Unexpected messages can cause a significant amount of performance degradation. Unexpected

short messages are typically stored in buffers that are managed by the MPI library and copied

into the user buffer once a matching receive is posted. Too many unexpected short messages can

10

cause the MPI library to exhaust the space alloacated to store them. Unexpected long messages

are typically not buffered at the receiver. Rather, a rendezvous protocol is used to buffer the

message in place at the sender. When a matching receive is posted, the receiver takes steps

necessary to transfer the data from the sender. By their nature, unexpected long messages do

not realize the full bandwidth performance of the network.

Unexpected messages are considered to be the “slow path” because they remain in the

unexpected queue for an indeterminate amount of time. Unexpected short messages also have

large memory resource requirements to accommodate the buffering of the entire message at the

receiver. Figure 1 shows the proportion of messages that falls into each of four categories: ex-

pected long, expected short, unexpected long, and unexpected short. Unexpected short messages

are clearly quite common in the real applications that were evaluated while unexpected long

messages were very uncommon. ITS demonstrates the worst case behavior with the proportion

of unexpected short messages appearing to scale linearly with the number of processes in the

job. In all of the cases, it is clear that unexpected messages must be handled quickly and that

significant memory will be needed to buffer unexpected short messages.

B. Queue Lengths

One of the greatest limitations of most modern network interface hardware is the extremely

limited amount of memory on the card. As such, the maximum length of the posted receive

queue and the unexpected message queue have significant implications for the feasibility of

message offload. Figure 2 shows the maximum search length and maximum overall length for

the posted receive and unexpected message queues. The maximum queue length is an indication

of the amount of memory resources required to store the queue. These results indicate that, even

for relatively small numbers of processors, the maximum length of both the posted queue and

the unexpected queue are within the limits of the memory that a modern NIC would support;

however, the results also indicate several potential problems. The posted queue length of the AMR

version of CTH increases with the number of processes in the job. Similarly, the unexpected

queue results for the non-AMR version of CTH and LAMMPS appear to scale linearly. This

is potentially more significant since the unexpected queue is an order of magnitude longer than

the posted queue.

These results also show the disparity between rank 0 and the rest of the ranks in the job.

11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 4 8 16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

0%

20%

40%

60%

80%

100%

8 16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

(a) CTH - 2Gas (b) CTH - AMR

0%

20%

40%

60%

80%

100%

8 16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

0%

20%

40%

60%

80%

100%

8 27 64 125

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

(c) ITS (d) LAMMPS

Fig. 1. Breakdown of messages by expected/unexpected and long/short properties for applications

Removing rank 0 from the results, the maximum length of the unexpected queue drops dramat-

ically. This can probably be attributed to the fact that most applications use rank 0 as the root

of collective operations. This data indicates that uniform allocation of resources across all ranks

may not be optimal.

C. Search Length

The search length of a queue is the number of queue entries that are traversed in a given search.

While long queues have implications for the amount of memory required for NIC offload, the

portion of those queues that are searched has a significant impact on the processing power needed

by the NIC. Search length also affects the real latency seen by applications.

12

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(a) Max posted queue length (b) Max posted queue length (no rank 0)

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(c) Max posted queue search (d) Max posted queue search (no rank 0)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(e) Max unexpected queue length (f) Max unexpected queue length (no rank 0)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(g) Max unexpected queue search (h) Max unexpected queue search (no rank 0)

Fig. 2. Maximum length and search depths of the posted and unexpected message queue

13

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

CTH - AMR
CTH - 2Gas

ITS
LAMMPS

(a) Average posted queue search (b) Average unexpected queue search

Fig. 3. Average search depth of the posted and unexpected queues

Figure 2 shows the maximum search length for these applications. This data reveals many

interesting properties. There are several cases for both queues where the maximum search length

is the entire length of the queue. This makes sense for the unexpected queue, where a matching

entry may not be in the queue when a receive is posted. It is more disconcerting to see that several

applications search the entire length of the posted receive queue to find a match. These results

seemingly discourage, for example, an offload implementation of the MPI matching semantics

where a small portion of the posted receive queue is buffered in NIC memory and the remainder

of the queue is traversed by accessing host memory from the NIC.

Figure 3 shows the average search depth of the posted and unexpected queues. Compared to

the maximum value, the average traversal of the posted receive queue is extremely small. This

is also true for the unexpected queue, except for the ITS application. In this case, the impact

of search length at rank 0 is significant. The disparity between maximum search length and

average search length is also likely to introduce variability into the execution time of a time

step (the time between synchronization points). This type of variability is the key symptom of

the “rogue OS effect”[19], which leads to significantly longer applications execution times. This

type of variability will also prove to be one of the major limiting factors in scaling from 10,000

to 100,000 nodes.

14

D. Comparison to Benchmarks

Figure 4 provides the same breakdown of messages for the NAS parallel benchmarks as

seen for real applications in Figure 1. Our experience with real applications thus far shows

very little correlation with the behavior of the NPB suite in terms of expected and unexpected

messages. In contrast, Figure 5 indicates that there is more correlation in the queue behaviors

of real applications and the NPB suite. In this case, only the measurements without rank zero

are compared. Most of the real applications (like most of the NPB) have small maximum queue

lengths, but some are related to the number of nodes. The key difference is that the growth in

length for applications appears to be related to log(P) while the growth for the benchmarks

appears to be related to P . Similarly, the search behavior of the benchmarks is correlated with,

but not identical to, the behavior of the real applications.

VII. CONCLUSIONS

This paper presented an initial analysis of the message passing behavior of four real application

scenarios in terms of the resource usage and resource requirements. The results indicate that, in

many cases, certain MPI resource requirements scale with the number of processes. The growth

(with process count) of the unexpected queue and the growth in the percentage of messages

which are short and unexpected requires that both significant memory and significant processing

be dedicated to MPI. Unfortunately, these patterns vary across applications in a way that indicates

that a generalized resource management scheme may be inappropriate. Moreover, the usage

patterns within one job (specifically for rank 0) vary widely indicating that a single, static

resource management scheme may be insufficient even within a single job. These results were

compared to the NAS parallel benchmark suite, which was studied using the same analysis

techniques. We found that the degree of correlation between the message passing behavior of

the NPB suite and Sandia’s applications varied based on the parameters being measured. The

behavior of the NPB suite appears to be a reasonable first approximation of real applications,

but is not truly representative.

15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 36 64 121

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

0%

20%

40%

60%

80%

100%

16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

(a) BT (b) CG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

(c) FT (d) IS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

(e) LU (f) MG

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 36 64 121

Number of Processes

M
es

sa
ge

 B
re

ak
do

w
n

(g) SP

Fig. 4. Breakdown of messages by expected/unexpected and long/short properties for NAS parallel benchmarks

16

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140
E

nt
rie

s
Number of Processors

BT
CG
FT
IS

LU
MG
SP

(a) Max posted queue length (b) Max posted queue search

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(c) Max unexpected queue length (d) Max unexpected queue search

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

E
nt

rie
s

Number of Processors

BT
CG
FT
IS

LU
MG
SP

(e) Average posted queue search (f) Average unexpected queue search

Fig. 5. Queue behavior of the NAS parallel benchmarks

17

VIII. RELATED WORK

There is a significant amount of work in the area of parallel application performance analysis.

However, we know of no work that collects, analyzes, or uses MPI unexpected messages or MPI

queue information as a basis to characterize performance, scalability, or network resource usage.

Most performance analysis tools for MPI use the MPI profiling interface to gather message

tracing and timing information. Since unexpected messages are not exposed in the MPI pro-

gramming interface, this information is not available to the profiling layer. Many of the issues

with unexpected messages that we described in this paper have motivated work on a portable

interface for exposing low-level MPI implementation details, such as unexpected messages, to

application developers and performance tool developers. This interface, called PERUSE [20], is

currently being explored by a number of organizations in the MPI research community. This

work emphasizes the need to be able to capture low-level MPI performance information to assist

in characterizing application message passing requirements.

In addition to performance analysis, there is also a significant amount of work that characterizes

the message passing behavior of applications and application benchmarks in an attempt to

understand or predict how well they will scale. Example of this type of analysis can be found in

[21] and [22]. As with performance tools, this analysis does not consider the impact or effect of

unexpected messages or queue lengths, largely because this information is not easily attainable.

IX. FUTURE WORK

This initial analysis provided answers to some important questions regarding MPI queue

behavior for real applications. However, several important questions remain.

We expect that some of our results are platform dependent and that various apsects of a system

may have a significant impact on MPI queue usage. For example, the cluster from which our

results have been gathered is highly unbalanced in terms of computation to network bandwidth.

A platform that provides significantly more network bandwidth may behave much differently.

We intend to explore the degree to which these types of system parameters impact MPI queue

usage. One system aspect that we intend to explore in depth is the impact of scale. While 128

processors is a significant number, it is well short of the several thousand that we expect for the

typical application running on Red Storm.

18

The approach to instrumentation that we presented is this paper is straightforward. More ad-

vanced techniques may be necessary to truly capture the level of detail necessary for performance

optimizations or to help develop adaptive strategies for network interface resource allocation and

management. In particular, we would like to examine the distribution of MPI queue search data

rather than just examining average data over the entire run of an application.

REFERENCES

[1] Intel Corporation, “Paragon XP/S product overview,” Intel Corporation, 1991.

[2] L. Shuler, C. Jong, R. Riesen, D. van Dresser, A. B. Maccabe, L. A. Fisk, and T. M. Stallcup, “The Puma operating

system for massively parallel computers,” in Proceeding of the 1995 Intel Supercomputer User’s Group Conference. Intel

Supercomputer User’s Group, 1995.

[3] R. Brightwell, W. Lawry, A. B. Maccabe, and R. Riesen, “Portals 3.0: Protocol building blocks for low overhead

communication,” in Proceedings of the 2002 Workshop on Communication Architecture for Clusters, April 2002.

[4] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg, “The Quadrics network: High-performance clustering

technology,” IEEE Micro, vol. 22, no. 1, pp. 46–57, January/February 2002.

[5] [Online]. Available: http://www.llnl.gov/linux/mcr/

[6] [Online]. Available: http://www.lanl.gov/projects/pink/

[7] R. Alverson, “Red Storm,” in Invited Talk, Hot Interconnects 10, August 2003.

[8] W. J. Camp and J. L. Tomkins, “Thor’s hammer: The first version of the Red Storm MPP architecture,” in In Proceedings

of the SC 2002 Conference on High Performance Networking and Computing, Baltimore, MD, November 2002.

[9] S. R. W. Timothy G. Mattson, David Scott, “A TeraFLOPS Supercomputer in 1996: The ASCI TFLOP System,” in

Proceedings of the 1996 International Parallel Processing Symposium, 1996.

[10] K. D. Underwood and R. Brightwell, “The impact of MPI queue usage on message latency,” in Proceedings of the

International Conference on Parallel Processing (ICPP), Montreal, Canada, August 2004.

[11] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable implementation of the MPI message passing

interface standard,” Parallel Computing, vol. 22, no. 6, pp. 789–828, September 1996.

[12] W. Gropp and E. Lusk, MPICH ADI Implementation Reference Manual, Mathematics and Computer Science Division,

Argonne National Laboratory, October 1994.

[13] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K. Su, “Myrinet: A gigabit-per-second

local area network,” IEEE Micro, vol. 15, no. 1, pp. 29–36, Feb. 1995. [Online]. Available: m10029.pdf

[14] R. F. V. der Wijngaart, “NAS Parallel Benchmarks Version 2.4,” Tech. Rep., October 2002.

[15] S. J. Plimpton, “Lammps web page,” July 2003, http://www.cs.sandia.gov/ sjplimp/lammps.html.

[16] ——, “Fast parallel algorithms for short-range molecular dynamics,” Journal Computation Physics, vol. 117, pp. 1–19,

1995.

[17] S. J. Plimpton, R. Pollock, and M. Stevens, “Particle-mesh ewald and rRESPA for parallel molecular dynamics,” in

Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, Mar.

1997.

[18] R. Brightwell, H. E. Fang, and L. Ward, “Scalability and performance of CTH on the Computational Plant,” in Proceedings

of the Second International Workshop on Cluster-Based Computing, May 2000.

19

[19] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of the missing supercomputer performance: Identifying and eliminating

the performance variability on the ASCI Q machine,” in Proceedings of the 2003 Conference on High Performance

Networking and Computing, November 2003.

[20] R. Dimitrov, A. Skjellum, T. Jones, B. de Supinski, R. Brightwell, C. Janssen, and M. Nochumson, “PERUSE: An MPI

performance revealing extensions interface,” Presented at the Sixth IBM System Scientific Computing User Group, August

2002.

[21] J. S. Vetter and F. Mueller, “Communication characteristics of large-scale scientific applications for contemporary cluster

architectures,” in 16th International Parallel and Distributed Processing Symposium (IPDPS’02), April 2002, pp. 27–29.

[22] F. Wong, R. Martin, R. Arpaci-Dusseau, and D. E. Culler, “Architectural requirements and scalability of the NAS parallel

benchmarks,” in Proceedings of the SC99 Conference on High Performance Networking and Computing, November 1999.

